1. What value of x will make DE II AB in the given figure?

2. In figure, $D E$ is parallel to base $B C$. If $A D=2.5 \mathrm{~cm}, B D=3.0 \mathrm{~cm}$ and $A E=3.75 \mathrm{~cm}$, find the length of $A C$

3. In the figure. XY II BC. Find the length of $X Y$

(2cm)
4. In figure, considering triangles BEP and CDP, prove that: $B P \times P D=E P \times P C$

5 . D is a point on the side $B C$ of a $\triangle A B C$ such that angle $A D C=$ angle $B A C$. Prove that $C A / / C D=C B / / C A$ 6. In figure angle $A C B=90^{\circ}, C D$ perpendicular to $A B$, prove that $C D^{2}=B D$. $C D$

7. A vertical pole which is 2.25 m long casts a 6.75 m long shadow on the ground. At the same time a vertical Tower casts a 90 m long shadow on the ground. Find the height of the tower
8. If $\triangle A B C \sim \triangle P Q R$. Also $\operatorname{ar}(\triangle A B C)=4$ ar $(\triangle P Q R)$. If $B C=12 \mathrm{~cm}$, find $Q R$
9. The areas two similar triangles $A B C$ and DEF are $36 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$ respectively. If $E F=6.9 \mathrm{~cm}$, determine BC
10. Two isosceles triangles have equal angles and their areas are in the ratio 81:25. Find the ratio of their Corresponding heights
11. D, E and F are respectively the mid points of the sides $B C, C A$ and $A B$ of $\triangle A B C$. Find the ratio of the areas of \triangle DEF and $\triangle A B C$
12. The perimeters of two similar triangles are 36 cm and 48 cm respectively. If one side of the first triangle is 9 cm , what is the corresponding side of the other triangle
(12cm)
13. In triangle $A B C, A B=\sqrt{ } 3 a, A C=a$ and $B C=2 a$. Prove that $L A=90^{\circ}$
14. In triangle $A B C, \angle B A C=90^{\circ}$ and $A D \perp B C$. If $B D=8 \mathrm{~cm}, D C=18 \mathrm{~cm}$, find $A D$
15. Two poles of height 8 m and 13 m stand on a plane ground. If the distance between their tips is 13 m , find the distance between their feet
(12m)
16.Two poles of height 10 m and 15 m stand vertically on a plane ground. If the distance between their feet is $5 \sqrt{ } 3 \mathrm{~m}$, find the distance between their tops
17. The perpendicular from A on side $B C$ of a triangle $A B C$ intersects $B C$ at D such that $B D=3 C D$. Prove that $2 A B^{2}-2 A C^{2}=B C^{2}$
18. In an isosceles triangle $A B C$ with $A B=A C, B D$ is a perpendicular from B to the side $A C$. Prove that $B D^{2}-C D^{2}=2 C D . A D$
19. P and Q are points on the sides $C A$ and $C B$ respectively of a $\triangle A B C$ right angled at C. Prove that $A Q^{2}+B P^{2}=A B^{2}+P Q^{2}$
20. In $\triangle A B C$, If $A D$ is the median, show that $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$
21. In figure, T trisects the side $Q R$ of right triangle $P Q R$. Prove that $8 P^{2}=3 P^{2}+5 \mathrm{PS}^{2}$

22. If $B L$ and $C M$ are medians of a triangle $A B C$ right angled at A, then prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$
23. In a triangle $A B C, A B=B C=C A=2 a$ and $A D$ perpendicular to $B C$. Prove that $A D=a \sqrt{ } 3$ and area of $\Delta A B C=\sqrt{3} a^{2}$
24. In an equilateral triangle $A B C, A D$ is the altitude drawn from A on side $B C$. Prove that $3 A^{2}=4 A D^{2}$
25. In a triangle $A B C, A D$ is perpendicular on $B C$, prove that $A B^{2}+C D^{2}=A C^{2}+B D^{2}$
26. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares on its diagonals
27. P is a point in the interior of rectangle $A B C D$. If P is joined to each of the vertices of the rectangle, prove That $P B^{2}+P D^{2}=P A^{2}+P C^{2}$

